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On the Origin of Ultra High Energy Cosmic Rays 
T. Kenneth Fowler, Lawrence Livermore National Laboratory* 

Stirling Colgate and Hui Li, Los Alamos National Laboratory 

 

Abstract 

Turbulence-driven plasma accelerators produced by magnetized accretion disks 

around black holes are proposed as the mechanism mainly responsible for observed 

cosmic ray protons with ultra high energies 1019 – 1021 eV.  The magnetized disk 

produces a voltage comparable to these cosmic ray energies. Here we present a Poynting 

model in which this voltage provides all of the energy to create the jet-like structures 

observed to be ejected from accretion disks, and this voltage also accelerates ions to high 

energies at the top of the expanding structure. Since the inductive electric field E = - v x 

B driving expansion has no component parallel to the magnetic field B, ion acceleration 

requires plasma wave generation – either a coherent wave accelerator as recently 

proposed, or instability-driven turbulence. We find that turbulence can tap the full 

inductive voltage as a quasi-steady accelerator, and even higher energies are produced by 

transient events on this structure. We find that both MHD modes due to the current and 

ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution 

contribute to acceleration.  We apply our results to extragalactic giant radiolobes, whose 

synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other 

astrophysical structures. Approximate calculations of the cosmic ray intensity and energy 

spectrum are in rough agreement with data and serve to motivate more extensive MHD 

and kinetic simulations of turbulence that could provide more accurate cosmic ray and 

synchrotron spectra to be compared with observations. A distinctive difference from 

previous models is that the cosmic ray and synchrotron emissions arise from different 

parts of the magnetic structure, thus providing a signature for the model.  
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1. Introduction 

The conjecture that ultra high energy cosmic ray protons with energies 1019– 1020 

eV arise from Active Galactic Nuclei has recently been substantiated [1].  Jets ejected 

from AGN’s have been proposed as the source of acceleration energy, both kinetic and 

magnetic forces having been postulated to drive the jet-like ejections from AGN’s [2].  

Here we follow the magnetic hypothesis, or Poynting model, in which a magnetic 

field alone creates jets that accelerate cosmic ray ions, yielding features markedly 

different from kinetic models. We extend the work of Colgate and Li in which giant 

radiolobes produced by AGN’s are assumed to be magnetic structures like “spheromak” 

plasmas produced in the laboratory [3].  We arrive at a self-consistent model, yielding 

both the observed synchrotron radiation and also the acceleration and ejection of ultra-

energetic ions as cosmic rays. Our model, based on plasma turbulence as distinct from 

coherent plasma wave acceleration recently proposed [4], yields numbers in rough 

agreement with several aspects of the astrophysical data on giant radiolobes.  

An example jet/radiolobe magnetic structure obtained by MHD simulation is 

shown in Fig. 1 taken from Ref. [5], showing a rising column of current that flares out at 

the top where field lines turn radially to make their way back to the source.  Figures in 

that reference closely resemble “spheromaks” produced by plasma guns, much studied in 

magnetic fusion energy research. As in spheromaks, plasma instability actually creates 

the 3D structure also shown in Ref. [5], the 2D figures being the toroidal average of the 

3D figures. 

In Section 2, we apply results from spheromak research and other plasmas physics 

results to predict the main features of giant radiolobe structures and cosmic ray 

acceleration produced by these structures. Sections 2 – 9 describe a detailed model 

having these features, as one example demonstrating self-consistency of the concepts, 

including in Section 6 the observed electron synchrotron radiation from giant radiolobes 

that serves to calibrate model parameters. Extrapolation of the giant radiolobe model to 

other astrophysical objects is discussed in Section 10, and future work needed to pin 

down details of both cosmic ray and synchrotron spectra is described in Section 11. To 

maintain narrative flow, discussions of relevant plasma physics topics are collected in 

Appendix A.  We use MKS units, giving cosmic ray energies in electron volts.  
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2. Qualitative Features 

  Results in Ref. [5] simulating giant radiolobe formation could equally well 

describe the formation of spheromaks in the laboratory, merely by replacing the magnetic 

flux generator of Ref. [5] by an electrostatic plasma gun with applied voltage V, as in the 

pioneering work of Ref. [6] and many subsequent papers in the plasma physics literature. 

For a spinning disk of active radius ao, and magnetic field Bo perpendicular to the disk, 

V= ao (vo x Bo) with an electromotive force vo x Bo for rim speed vo. In Section 4 and 

Appendix A1, we show that this voltage can produce an electric acceleration greatly 

exceeding the gravitational attraction of the black hole. Then electric currents can arise 

outside the event horizon, described, in an inertial reference frame centered in the disk, 

by:  

 

- ∂B/∂t = ∇ x E        (1) 

 

j x B = ∇ ⋅ P        (2)     

 

where j is the current density.  

We will find that the rate of magnetic expansion is slow compared to the Alfven 

speed, whereby the momentum equation can be replaced by the equilibrium Eq. (2) with 

pressure tensor P discussed below. The slow dynamic driver is the electric field E, given 

inside the current channel by: 

 

 E = - v x B        (3) 

  

where v is the fluid velocity and for the moment we neglect dissipation. Thus the 

dynamics is described by a succession of equilibria expanding slowly at a rate v ≈ dL/dt 

where L is the vertical length of the structure.  

It is well known from the study of spheromaks that these equilibria always look 

like those of Ref. [5], with a central column of current terminated by a return current and 
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magnetic flux that takes the shape of a confining boundary in most laboratory 

experiments [6]. For accretion disks, external pressure around the disk determines the 

shape of the jet, which expands to a large size as pressure drops away from the disk [2, 

5]. However, external pressure is too weak to oppose the strong magnetic pressure at the 

upper boundary or “nose” of the structure, so that the length L expands freely as long as 

the disk can feed energy to expansion. The main effect slowing down expansion is the 

growing magnetic energy inside the lobe, easily calculable since the field there is 

essentially the vacuum field due to current in the central column (as seen in Fig. 1C 

showing B ∝ 1/r inside the lobe). Compared to earlier work [7], dL/dt is reduced by a 

factor ln (R/a0) ≈ 20 for a lobe of radius R (see Section 5).   

The radius of the central column depends on the pressure tensor P.  This is the 

main distinguishing feature of our model, compared with kinetic models such as the 

magnetocentrifugal model of Ref. [8] in which P includes an ad hoc injection of mass 

near the axis of symmetry. By contrast, we replace mass injection by a boundary 

condition that injects electric current, as in Ref. [6] describing electrostatic plasma gun 

injection. We have in mind a physical situation in which ions carrying current are 

extracted through an electrostatic sheath, as in a plasma gun, while the growing 

jet/radiolobe structure shields itself from additional mass accretion inside the lobe. 

Further expansion of the radiolobe is driven solely by the voltage drop across the lobe 

where it intersects the spinning magnetized disk. This voltage is so large that all ions 

carry current at speed c, giving a density n ∝ (I/ec), as discussed in Sections 3 and 6, and 

in some detail in Appendix A1.  

Since the mass injected into the radiolobe in our model is just that required to 

carry the current, we will find that P in the central column is small because the density n 

is small. Setting P = 0 in Eq. (2) gives a “force free” equilibrium, for which the central 

column radius is about equal to the active disk radius ao.  But the disk radius will turn out 

to be orders of magnitude smaller than that of the visible jet.  

Thus, in contrast with kinetic models favoring a continuous structure filling the 

visible domain of the observed jet/radiolobe, our purely Poynting model predicts that the 

central column of current is a very thin filament deep inside the visible boundary that 

surrounds a largely empty radiolobe. Also, because the column radius is small, the 



 6 

magnetic field is very high inside the filament, giving enhanced synchrotron radiation. 

Then the apparent continuous glow of the radiolobe is actually due to synchrotron 

radiation from the thin filament inside. Because of instability, the thin filament is twisted 

so as to loosely fill the volume, shown in Ref. [5]. The extended glow arises from the 

twisted filament, as in an incandescent light bulb. With adequate resolution to see it, this 

filamentary structure would provide a distinguishing feature of the model.  

For cosmic rays, an important consequence of the filamentary central column is 

the fact that strong synchrotron radiation by the ions could prevent the acceleration of 

ions to high energies, even though the unstable twisting of the column does provide an 

accelerating voltage along field lines of the toroidally-averaged field structure. We find 

that, while large transient events can overcome radiation, acceleration by quasi-steady 

levels of turbulence that explains much of the data is only overcome as field lines bend 

and diverge to form the return flux at the nose.  

Thus we are led to a model in which quasi-steady ion acceleration occurs only in 

the extreme nose, where flux expansion reduces the magnetic field to the point that 

synchrotron radiation is no longer dominant. The filamentary central column serves 

mainly to transmit energy to the distant nose largely undiminished. If acceleration does 

occur in the nose, the increasing ion pressure due to acceleration finally exceeds the weak 

magnetic pressure, causing the flux return to widen. This is a kinetic effect, not captured 

in MHD simulations. Moreover, acceleration to the highest energies is almost surely due 

to a kinetically-driven instability. The reason for this is that, as the flux return widens, the 

dominant magnetic field is toroidal (around the axis of symmetry), while the current is 

mainly poloidal, flowing in the plane of figures of Ref. [5], perpendicular to the toroidal 

field lines. Then particles carrying the current must flow perpendicular to the field, and 

this requires instability to produce diffusion across the magnetic field giving strong 

acceleration of the ions. Instability-driven acceleration was also proposed in Ref. [9].  

Fortunately for the model, we will find a confluence of circumstances whereby 

kinetic instability of the ions sets in just when it is required to carry the current. Details 

are developed in Section 7, and acceleration by transient events in the central column is 

discussed in Section 9. The predicted spectrum of cosmic ray energies by all processes is 

discussed in Section 8, and found to be in reasonable agreement with observations.  
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Details of the magnetic structure model are developed in Sections 5 and 6 and the 

self-consistency of model parameters with observed electron synchrotron radiation is 

discussed in Section 6. Three other points of self-consistency are: (1) the current profile 

used to calculate magnetic energy, (2) unstable diffusion of electrons enhancing 

synchrotron radiation in the central column, and (3) the existence of mechanisms for ion 

diffusion where it is needed in the “nose.” The latter two points are discussed in Sections 

6 and Appendix A5 for point (2) and Section 7 and Appendix A7 for point (3).  

Concerning point (1), fortunately details of the current profile are not very 

important in calculating the magnetic energy. For concreteness we will assume magnetic 

relaxation that would distribute current across the central column and across the flux 

return [10]. We will find this to be well justified in the flux return and marginally so in 

the central column. However, the opposite extreme in which current flows as a “skin” 

current in the absence of relaxation still gives about the same magnetic energy inside the 

column, as discussed in Appendix A3.  

In the laboratory, the timescale for magnetic relaxation is usually given by 

collisional resistance, while resistance is negligible here. Instead, relaxation of the 2D-

averaged magnetic field structure is due to 3D instability giving the results in Ref. [5] for 

the case of MHD instability. Taking the fields in Eq. (1) to be 2D averages, relaxation of 

the 2D averaged B is caused by a 2D averaged E due to instability and a corresponding 

voltage drop ΔV. Substituting the 2D averaged E into Eq. (1) gives a magnetic relaxation 

time comparable to τ, the radiolobe lifetime. The existence of the 2D averaged E due to 

current-driven instability was demonstrated for MHD simulations in Ref. [6].  

 

3. Current Generation 

In order for Poynting flux to generate a giant radiolobe magnetic structure, 

accretion must produce a coherent magnetic field embedded in the spinning disk [3]. It is 

the coherent field discussed in Ref. [3] that serves to determine the orientation of the axis 

of symmetry of the figures in Ref. [5]. Here we assume that an embedded field exists and 

examine the consequences.  

We continue to adopt an inertial reference frame centered in the spinning 

accretion disk. In this reference frame, an embedded magnetic field B normal to the disk 
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produces a voltage V found by integrating the electric field v x B across the disk, where v 

is the rotational velocity rΩ and B is the poloidal field r-1∂(rAφ)/∂r for vector potential Aφ 

= (ψ/2πr) where ψ(r) labels “poloidal” magnetic flux surfaces emerging normal to the 

disk. By transforming from the radial variable r to ψ(r) as the coordinate, the voltage 

difference Va,b between two radii r = a,b where a given ψ(r) intercepts the disk is given 

by:  

 

Va,b  = ∫a
b dr [r -1 (∂ψ/∂r) rΩ(r)] = ∫a

b dψ Ω(ψ)  (4) 

 

where the frequency Ω(ψ) describes Keplerian rotation. For accretion with angular 

momentum [2], the average radius ao representing a,b can be estimated by equating the 

rotational energy of an accreted disk mass MD to its gravitational energy due to a black 

hole of mass M, giving 1/2 MD(Ωao)2 = MDMG/ao from which we obtain: 

 

(Ωao/c)  = (RG/ao)1/2 , RG   =  (2MG/c2)           (5)  

 

where RG is the Schwarzchild radius representative of the event horizon, c being the 

speed of light. Eq. (6) is valid if (Ωao/c) < 1.  

In the electrically-conducting environment of the accretion disk, V causes current 

to flow along field lines connecting pairs of radii a, b. As is discussed in Sections 4 and 5, 

this causes stretching of the field lines if electromagnetic forces on the ions exceed 

gravity. Stretching the field applies a force to mass injected onto the field lines as current. 

The current arises wherever this force is first able to eject ion masss in competition with 

gravitational attraction. This will occur somewhere above the event horizon, at a distance 

d from the center of the black hole, allowing ions to escape if V > VG given by:  

 

VG  =  ∫d
∞dz(miMG/z2e)      (6)  

 

where mi is the ion mass, G is the gravitational constant and again M is the black hole 

mass at a depth d, the lower limit of integration. For numbers below and a black hole 
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mass of 3 x1037 kg (1062 ergs), Eq. (5) gives (Ωao/c) = 0.2 and, for d ≈ 0.1 ao, Eq. (6) gives 

VG = (1020/d) = 109  << V.  Details are discussed in Appendix A1.  

We first consider the case in which the inner radius r = a serves as the anode 

emitting ions. We will find that ions are quickly accelerated to relativistic speeds, giving 

a density ∝ the current I, given by: 

 

n = (I/e<v>AS) → (I/ecA)     (7)  

 

where e is the charge, <v> is the average current-carrying speed and AS is the surface 

area, giving the expression on the right as <v> → c.  

In our model, the minimum density on the right hand side of Eq. (7) is also the 

density in the central column with radius a and area A = πa2. A large influx of colder gas 

or plasma could increase the densisty. But there is no likely source to increase the density 

in the central column of the giant radiolobe structure. Unionized gas feed through the 

sheath is an unlikely source, since ΔS << a for parameters of interest. Feed from accreting 

mass and ambient pressure outside of the radiolobe is unlikely, since the central column 

is shielded by the return flux plasma and the magnetic field of the jet/radiolobe structure. 

Thus we can take Eq. (7) to be the density all along the central column; again, see 

Appendix A1. 

 Note that, in dividing by the full area A, Eq. (7) assumes that the current, and 

hence the density, are distributed radially across the profile, as would be the case for 

magnetic relaxation. The local magnitude n(r) will be important in determining instability 

conditions in Sections 5 and 6, the lower n found by dividing by the full area A generally 

being the more conservative choice in determining stability boundaries. 

 

4. Evolution of the Magnetic Structure: MHD Simulations 

The magnetic structures of Ref. [5] are snapshots of an expansion process in 

which the column is constrained radially by a striated ambient pressure decreasing away 

from the disk [5].  

The prominent features of the toroidally-averaged field are the central column of 

current and magnetic flux, and the expanded lobe between the central column and its 
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return flux confined by the amibient pressure. As noted in Section 2, these are also the 

characteristic features of spheromak plasmas created by electrostatic gun injection, where 

a metal wall plays the role of the ambient pressure. In both cases, the configuration is 

created by expansion of the flux when the current becomes strong enough to stretch and 

twist the field lines. The main differences are: (a) in the laboratory, the voltage is 

produced by a capacitor bank; and (b) the small size and relatively long timescale of 

laboratory experiments often allows complete magnetic relaxation filling in the lobe with 

current.  

Concerning point (a) above, the difference in voltage source has little effect, 

because magnetic relaxation rather than the voltage source largely determines the 

geometry of the magnetic field. As noted in Section 2, this follows from the typical 

timescale whereby the magnetic field given by Eq. (2) is at all times approximately a 

solution of j xB = 0 with µoj = λ(ψ)B where again ψ denotes a poloidal flux surface. For 

complete magnetic relaxation, λ is a constant [9], whereas here there is insufficient time 

for magnetic relaxation in the radiolobe, giving a very small λ there.  However, it is 

known that, for any λ profile, the toroidally-averaged solutions of µoj = λ(ψ)B give a 

collimated structure like that shown in Ref. [5]  Also, these force-free solutions have high 

rigidity, always following the shape of the instantaneous boundary, consistent with the 

varied shapes observed for giant radiolobes to be expected if intergalactic “winds” distort 

the ambient pressure boundary confining the magnetic structure [2].  

Concerning point (b), the large size and limited duration of the giant radiolobes 

means that magnetic relaxation is not complete inside the lobe. Instead, the magnetic 

field in the lobe is essentially the “vacuum” field due to current in the central column. 

That the lobe field is approximately a vacuum field is confirmed in Ref. [5]. The vacuum 

field inside the lobe of radius R contains most of the magnetic energy, a factor ln(R/a) 

more than that inside the central column of radius a. Thus one would expect the 

expansion rate dL/dt of the length L to decrease like 1/(lnR/a) as the lobe expands, as 

shown in Section 5. 

Finally, we consider the 3D structure representing current-driven instability – 

“kink” modes – to be expected for a central column separated from the boundary, even 

for a current column attached to its source [11], verified in detail for our simulations in 
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Ref. [12]. It is kink instability that guarantees some acceleration of ions and electrons in 

expanding magnetic structures, even for plasmas obeying the ideal MHD Ohm’s Law 

given in Eq. (3). While acceleration would surely occur given E| | parallel to the magnetic 

field, the solution of Eq. (3) gives E⋅B = 0. Nonetheless, instability produces a toroidally-

averaged parallel electric field given by: 

 

 E| |  =   - < v1 x B1 >| | =  - < E1⋅ B1 /Bo>| | ≈ vABo(B1/Bo)2  (8) 

 

where both <…> and the subscript o denote a toroidal average and B1 = B – Bo describes 

a tangled magnetic field, and on the far right we introduce v1 obtained by linearizing Eq. 

(3). For MHD modes, we take E1/Bo ≈ vA (B1/Bo) with Alfven speed vA, giving the 

expression on the far right hand side. Resistivity or radiative dissipation can extend the 

unstable domain, yielding “tearing modes” that also contribute to Eq. (8) [13].  

Introducing Eq. (8) into the toroidally-averaged momentum equation for ions or 

electrons (or their toroidally-averaged Vlasov equations) would produce acceleration of 

the particles. Acceleration acts as an impedance over and above that due to the growing 

vacuum field in the lobe. The contribution of the central column to this impedance is 

small if an integral ds along field lines of length L gives ΔV << V, where V is the disk 

voltage and ΔV is given by: 

 

∫ds E| |  = ΔV  ≈ LvA Bo (B1/Bo)2   (9) 

 

We will find that ΔV << V, indicating that the central column transports energy to 

the nose almost undiminished, as noted in Section 2.  

 

5. Evolution of the Magnetic Structure: Theoretical Model 

To extrapolate the MHD simulations of Section 4 to astrophysical objects, we will 

use a simple circuit model of current injection that explains spheromaks in the laboratory 

[10]. The theoretical basis for this model is limited magnetic relaxation, discussed in 

Appendix A2, whereby we know the spatial distribution of the poloidal magnetic field 

and the poloidal current inside the central column and return flux.  Then the field and 
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current can be described by two lumped circuit parameters, the voltage V representing 

rotation with total “poloidal” flux ψ normal to the disk, and the current I giving the twist 

or “toroidal” component of the flux.  The plasma processes causing magnetic relaxation, 

including Eq. (8), are discussed in Appendix A3. These processes also serve to allow the 

penetration of the inductive electric field inside the otherwise perfectly-conducting 

plasma carrying the current, as electron-ion collisions (negligible here) do in the 

laboratory.  

Given magnetic relaxation inside the central column but not in the lobe, the 

magnetic energy stored in a giant radiolobe of length L and radius R is described by: 

 

 ∫dx (B2/2µo) = 1/2 (LII2) ;       LI  =  (µo/2π)L ln R/a  (10)  

 

Here the integration is over the upper half of the volume of the structure in Fig. 1A, 

bounded above by the last closed flux surface and bounded below by a plane cut through 

the disk. In the inductance LI the factor ln R/a, mentioned in Section 2, accounts for 

magnetic energy inside the radiolobe due to the current I in the central column of radius a 

(for cgs units, substitute µo → 4π/c). The total power going into the evolving structure, 

derived in Appendix A2, is: 

 

 IV = d/dt {1/2 (LII2)}  +   ∫dx j⋅E     (11) 

 

The time derivative has two contributions, one due to changes in the volume that is 

dominated by the magnetic term for the minimum density in Eq. (7), and one due to 

changes within the volume. The kinetic contribution to the latter comes from the 

acceleration of particles, which we represent as:  

   

∫dx j⋅E = <α>IV        (12) 

  

We substitute Eq. (12) into Eq. (11) with the scaling parameter <α> = 0.5 justified below.  
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This gives:  

 

IV  = 2[d/dt (1/2 LII2)]       (13) 

 

Relating Eq. (13) to accretion disk parameters requires expressing V and I in 

terms of the average disk rotation frequency Ω, poloidal field Bo and the representative 

radius ao, giving a poloidal flux ψ = π ao
2Bo. We approximate the voltage in Eq. (4) by: 

  

V  =  (Ωψ/π)  = Ωao
2Bo     (14) 

 

As is discussed in Appendix A2, as V and I grow during accretion, at first an equilibrium 

can exist with magnetic fields confined to the neighborhood of the disk. Wind-out of the 

flux begins only when I increases to the point that the toroidal field due to I becomes 

comparable to the poloidal field at the disk, giving BTOR = (µoI/2πao) = BPOL  = (ψ/πao
2) 

from which:  

 

I = (2ψ/µoao) = (2πaoBo/µo)    (15) 

 

For the density in Eq. (7), we will find that the Alfven speed is of the order of c. 

Hence inductance rather than inertia limits the wind-out rate, giving a current that is 

always near the threshold value in Eq. (15), as shown in Appendix A2. Also, most of the 

energy transfer to the giant radiolobe occurs when ao is less than twice its final value 

during the life of the radiolobe.  Thus during the wind-out we can take I ∝ aoBo ∝ ψ/ao to 

be constant, given by Eq. (15). Setting the current equal to that in Eq. (15) serves as the 

boundary condition representing the electrostatic sheath discussed in Section 3.  

For constant current, and ignoring (L/R)(dR/dt) compared to (ln(R/a))(dL/dt), Eq. 

(13) gives, using Eqs. (14) and (15) : 

 

dL/dt = (Ωao/X)       (16) 

 

X  =   2[ 1/2 ln (R/a)] = ln R/a    (17)  
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where typically X ≈ 20 for giant radiolobes. A similar result is given in Ref. [7] but 

without the factor ln R/a. Eq. (16) follows from helicity conservation alone, as discussed 

in Appendix A2. 

To relate the central column radius a to ao in the disk, we note that, for the 

relatively slow flux expansion according to Eq. (16), we can assume a quasi-steady state 

all along the central column, giving as the force balance, Eq. (2): 

  

- ∂/∂r [(BTOR
2 + BPOL

2)/2µo]  =  ∂/∂r [(nmiγiv⊥
2

 )]   (18)  

  

where the left hand side is jxB of Eq. (2) neglecting cylinder effects and the right hand 

side is an approximation to the pressure tensor term of Eq. (2) with P = ∇⋅∫dp pvfo for a 

momentum distribution fo due to acceleration of the ions with energy γi in rest mass units 

and velocity component v⊥ along the radial pressure gradient. As v⊥ → c, an omitted 

centrifugal force term in P is of the same order as that given above. For simplicity, here 

and hereafter we treat a single species of ions, which we take to be protons, 

representative of extragalactic cosmic rays [1,3].  

We integrate Eq. (18) with radial boundary conditions BTOR = 0 at r = 0 and n = 

BPOL = 0 at r = a, and we divide by BPOL
2/2µo, giving: 

 

[1  - (BPOL
2/BTOR

2)] = β ≡ 2µo(nmiγiv⊥
2)/BTOR

2   (19) 

 

We must also match boundary conditions at the disk, giving a toroidally-averaged 

poloidal current and flux equal to those in the disk, hence BPOL = ψ/πa2 on axis and BTOR = 

(µoI/2πa) at r = a. Only BPOL and n on axis are dependent on details of the current profile. 

Substituting these values for the field components and n = (I/ecA) from Eq. (7), we 

obtain:  

 

(1 - ao
2/a2)     = β = (ao/a)){4(rLo /ao)(v⊥/c)2}  (20)    
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where rLo  = (mγc/eBTOR) for ions. A force-free solution with β << 1 obtains if the quantity 

{…} << 1, as is true for central column parameters derived in Section 7. Then pressure 

balance requires BPOL
 = BTOR (a force-free field), giving a = (2ψ/µoI) = ao

 by Eq. (15), 

hence also B = (µoI /2πa) = (µoI /2πao) = Bo. That is, the toroidally-averaged central 

column is a straight cylinder having the same radius and magnetic field as the disk: 

 

 a    = ao , B    =  Bo  central column    (21) 

 

 Similar considerations apply as ions leave the central column and enter the radial 

portion of the return flux at the top of Fig. 1A. Now the toroidal field in Eq. (19) is found 

by integrating ∇xB = µoj across the flux return to obtain BTOR = (µoI /2πr), while BPOL = 

ψ/A with area A → 4πrΔ for a flux channel half-width Δ; and we still assume that  ions 

carry the current, giving the density in Eq. (7). We obtain: 

  

[1 – (ao/4Δ)2]    =   β =   (rL /Δ)(v⊥/<v>)   =  (ao /4Δ){4(rLo /ao)(v⊥
2/c<v>)} (22)    

  

where we now allow <v> < c as discussed in Section 7. In the middle expression we 

introduce the actual Larmor radius rL = (mγv⊥/eBTOR) = rLo (v⊥/c) where γ and v⊥ giving 

the pressure are to be understood as values averaged over the distribution function fo.   

It follows from Eqs. (16) and (21) that the observed length L and estimated 

lifetime τ for giant radiolobes yield the disk rotational velocity, giving, with dL/dt = L/τ: 

  

 Ωao  = (LX/τ)  ≤ c    (23) 

 

Also, we assume for our model that the maximum cosmic ray energy ECR = αeV, where α 

represents the maximum utilization of V to accelerate ions, as compared with the average 

value taken as <α> ≈ 1/2 in Eq. (12). Then Eqs. (14) and (15) give the voltage V in terms 

of the current I and disk parameters, and from this the injection energy EINJ:  

 

 V = (Ωao)(aoBo) = (Ωao)(µoI/2π)  =   (ECR/αe) (24) 
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EINJ = τ IV  = τ (2π/µoΩao)(ECR/αe)2   (25) 

 

Substituting into Eqs. (23) and (24) typical values from Ref. [2] ( L = 1022 m, τ = 

108 yrs = 3 x 1015,  ECR = 2 x 1019  electron volts), and anticipating α = 0.7 and X ≈ ln R/a 

≈ 20 with a = ao by Eq. (21), we obtain: 

 

Ωao  = 0.2 c    ; (aoBo)  =        5 x 1011    (26) 

 

 

The numbers in Eq. (26) determine V = 3 x 1019 volts by Eqs. (14) and (24) and I = 2.5 x 

1018 amps by Eq. (15) and hence the injected energy EINJ = 2 x 1053 joules = 2 x 1060 ergs 

by Eq. (25). This is about 10% of the black hole rest mass energy, as derived from the 

approximate Eq. (5) giving a Schwarzchild radius RG = 4 x 1010m, hence a black hole rest 

mass M = 3 x 1037 kg equal to 2 x 1054 J = 2 x 1061 ergs.  

 

6. Electron Synchrotron Radiation 

Additional information comes from electron synchrotron radiation. The rate of 

energy loss by synchrotron radiation for charged particles following curved orbital paths 

with rotation frequency ωR is given by [14]: 

 

PRAD = (e2γ4ωR
2/6πεoc)       (27) 

 

In Appendix A5 we argue that plasma turbulence occurring at parameters of the central 

column would scatter electrons, giving a synchrotron radiation rate obtained by 

substituting vC = v⊥ = c, ωR = (c/RC) and RC  = rLe = (cmγ/eB) into Eq. (27)  [14, 15]: 

  

PRAD = (e4γe
2B2/6πεome

2c)          (28) 

 

in watts per electron. For electron synchrotron radiation, the observed frequency ω = kc = 

γe
3(eB/meγe) [14]. Let k = (2π/λS) for the  observed wavelength λS for the lowest 

harmonic. For λS in cm (but B in MKS), this gives: 
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  γe
2B = 1/λS  ; B   ≤  1/λS     (29) 

 

where the inequality follows from γe ≥ 1.  

We calculate the radiated power by multiplying Eq. (28) by the total number of 

electrons in the central column, and we set this equal to the input power. Note that, aside 

from the anode sheath, the voltage drop along a 2D central column expanding at constant 

radius would be essentially zero. As discussed in Section 5, an actual voltage drop ΔV 

must arise from 3D magnetic instability of the central column, producing an effective 

impedance in 2D, as discussed in Appendix A3. Assuming some ΔV, and using n from 

Eq. (7), we obtain: 

 

I ΔV = (LAn)(e4γe
 2B2/6πεome

2c) = I L K(B/λS)  (30) 

 

On the right hand side, we use Eqs. (7) and (29) and we took B = Bo by Eq. (21). The 

constant K  =  (e3/6πεome
2c2)  = 3.4 x 10-4. Canceling I’s gives a formula for ΔV in terms 

of the disk field Bo: 

 

ΔV =   L (K/λS) Bo     ≤  L (K/λS
2)     (31) 

  

where Eq. (29) gives the inequality on the right. 

The wavelength λS in Eq. (31) is meant to be that at the peak of the synchrotron 

power spectrum for radiation at an average magnetic field Bo, whereas electrons at a 

given temperature produce a broad spectrum below the peak [14], and a “runaway tail” 

would produce a decreasing power spectrum above the peak [15]. As an example, here 

we take λS = 2 cm as representative of a  massive black hole. For the typical parameters 

listed above (giving Eq. (26)), and taking eV = (ECR/α) =  (ECR/0.7) and λS = 2 cm, we 

find ΔV/V ≤ 0.03, corresponding to a magnetic fluctuation amplitude B1 /Bo of order 10-6 

by Eq. (9), in agreement with calculations in Appendix A6.   
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Using Eq. (26) and also Eqs. (29) and (30) (with the equalities), we obtain: 

 

Bo = 0.5 tesla,     ao = 1012 m,     (Ωao) = 0.2c,  ΔV/V = 0.03  (32) 

  

This ao gives X = 20 as assumed, with typical R ≈ 1/3 L, and an anticipated value α = 0.7 

discussed in Section 8. The quantity ΔV/V is the fraction of the power going into electron 

synchrotron radiation along the central column. Keeping the inequalities would give even 

smaller ΔV/V. It is the small value of ΔV that justifies the “vacuum” field calculation of 

the inductance factor X in Eq. (17). Taking the equality in Eq. (29) gives γe ≈1 in the 

central column and B = 1/λS.   

The active disk radius ao = 1012 m in Eq. (32) is consistent with expectations [2,3] 

and helps to justify our assumption of a low density n = (I/ecA) in Eq. (7) used in Eq. 

(30) to determine ΔV giving rise to electron synchrotron radiation, and in Eq. (20) giving 

the low plasma β indicating a force free field in the central column. An n five orders of 

magnitude larger still gives β << 1 while a 100-fold increase in n would give an 

impossible ΔV > V. Further justification for n = (I/ecA) giving the above results is given 

in Appendix A1. 

The above model of electron synchrotron radiation differs markedly from that in 

Ref. [15], in which radiation occurs in the weak magnetic field inside the radiolobe. In 

our model, the observed synchrotron radiation comes mainly from the 2D projection of 

the magnetic field giving the pronounced central column of figures in Ref. [5]. Even so, 

synchrotron radiation can appear to arise throughout the radiolobe due to the kink 

instability that winds up the central column inside the radiolobe, as shown in Fig. 1B.  

For the numbers above, cτ ≈ 100 L giving at most 100/π = 30 turns inside the lobe, 

similar to results in Ref. [5]. 

 

7. Quasi-Steady Ion Acceleration 

Violent transient events [3] and coherent plasma waves acting as accelerators [3A, 

8] have been proposed to account for ultra high energy cosmic ray ions. While such 

phenomena may occur, in this Section we show that cosmic rays can largely be accounted 

for by a straight-forward extrapolation of the steady turbulence-driven acceleration model 
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that was shown to fit electron sychrotron data in Section 7. Large transient events 

suggested in Ref. [3] are discussed in Section 9.  

As in Section 3, we first assume that the center of the disk serves as an anode 

ejecting ions into the central column. The voltage drop ΔV due to kink instability would 

also accelerate ions in the central column, limited by ion synchrotron radiation. Though 

we do not expect ions to be scattered as readily as electrons, ions with speed vC parallel to 

B do radiate in following curved field lines, by rotation at a frequency ωR = (vC/RC) where 

RC is the radius of curvature. Using this frequency in the synchrotron radiation power per 

ion in Eq. (27) gives for the ion energy εi: 

 

dεi /ds =   e[E| |   -  (PRAD/ec)] =  e[E| |  - (e/6πεo)(γ4/RC
2)]   (33) 

 

where s the length along field lines. Dividing by mi c2 giving γ  =  (εi /mi c2), we obtain 

for protons: 

 

dγ/ds = 10-9[E| |  -   10-9(γ4/RC
2)]     (34) 

 

We first apply Eq. (34) to the central column with RC = ao and constant E| | . 

Integrating gives approximately: 

 

 γ = 10-9 s E| | < 2 x 108 E| | 1/4  acceleration  (35) 

 

where the maximum value on the right is that which makes dγ/ds = 0 by Eq. (34), using ao 

= 1012 from Section 7. Solving for E| | gives as the condition for acceleration: 

 

 E| | < (1023/s4/3 )  ,    γ    =   (se E| | /mi c2)   <   (1019/s1/3 ) (36) 

 

For quasi-steady acceleration along the length s = L = 1022, this gives γ ≈ 107, more 

precisely γ = 2 x 107 for the exact maximum value. In Appendix A4, we draw similar 

conclusions even if the current breaks up into force-free filaments as discussed in Ref. 

[3]. Thus we conclude that the highest γ’s achievable by quasi-steady acceleration in the 
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central column are order γ = 107 corresponding to a proton energy of 1016 eV. This gives a 

Larmor radius << a0 as is required for our force-free model of the central column, but this 

energy is more than a 1000 times below that required to explain ultra energetic cosmic 

rays.  

Higher ion acceleration energies not limited by synchrotron radiation can be 

achieved after ions enter the nose where the magnetic field begins to fall ∝ 1/r. Since the 

magnetic free energy driving turbulence also decreases rapidly, we postulate that 

turbulence levels in the near nose region are actually those generated in the central 

column, with a radial extent of order R* given by: 

 

R* =  (µoI/2πB1) = ao(Bo/B1)    (37)   

 

Then the electric field analogous to Eq. (8) would be, with local field B = Bo(ao /r): 

 

  E| | =   cB(B1/B)2 =   cBo(B1/Bo)2(r/ao) =   (E| |)CC(r/ao)   (38) 

 

where (E| |)CC is the value in the central column for a given fluctuation level. Introducing 

Eq. (38) into Eq. (34) and solving for (E| |)CC gives acceleration over a range r < R* in the 

nose not limited by synchrotron radiation if the following is satisfied: 

 

(E| |)CC  <  [3 x 107/(r/ao)5/3] acceleration in the nose  (39) 

 

Condition Eq. (39) is well satisfied for quasi-steady acceleration with (E| |)CC = 1.5 x 10-4 

found in Section 6, giving a wide margin of validity up to r < 5 x 106 ao, which will prove 

adequate, as discussed below.  

Though we conclude that quasi-steady acceleration should occur in the nose, this 

regime continuing kink mode acceleration into the nose cannot long persist. Since B ≈ 

BTOR decreases as1/r (from Section 5), finally the ion Larmor radius rL → Δ.  At r = b 

where rL → Δ all energetic ions might escape. We postulate that, instead, the magnetic 

field begins to increase Δ in order to contain the ions, as it would if β = (rL/Δ)(v⊥/<v>)→ 

1 in Eq (22). While rL = Δ is not sufficient to guarantee β →1 for the minimum v⊥ to 
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confine ions to field lines, escape would increase v⊥ enough to do this. At β → 1, 

BPOL/BTOR  << 1 by Eq. (22), which implies that the flux half-width Δ has increased giving 

a much weaker poloidal field at fixed poloidal flux. Then orbital motion is primarily 

perpendicular to BTOR giving v⊥ → c and rL = Δ as Δ expands, yielding for relativistic 

ions:   

 

Δ = <rL> = (<E>/ecBTOR) = r(<E>/eV)(Ωao/c) (40) 

 

where <E> is the average ion energy and on the far right we use Eq. (14). A similar result 

was obtained in Ref. [9]. Eq. (40) is correct only for numbers giving Δ ≥ ao.     

To calculate acceleration in this β = 1 regime, we first note that, for BPOL/BTOR  << 

1, field lines become longer than cτ, in which case acceleration parallel to B is no longer 

viable. Acceleration continues only if some process allows acceleration perpendicular to 

B due to the poloidal electric field produced by dL/dt expansion, given by solving the 

ideal Ohm’s Law, Eq. (3), to obtain:  

 

EPOL = (dL/dt sinθ)BTOR  = sinθ (V/Xr)    (41) 

 

where θ is the angle between the field line and the axis of symmetry. To obtain the term 

on the far right, we used dL/dt = Ωao/X by Eq. (16) and BTOR = (µoI /2πr) = (aoBo/r) by 

Eq. (15) to obtain V =  (Ωao)(aoBo) by Eq. (14). Eq. (41) gives the poloidal electric field 

at the advancing flux return of the structure. Integrating along dl = dr/sinθ parallel to 

poloidal field lines gives:  

 

 ∫dl EPOL=    ∫a
r dr(sinθ)-1 [sinθ (V/Xr)] =   V (ln (r/ao)/X)  (42)  

 

For r = R, and using X ≈ ln R/ao, this gives ∫dsEPOL≈ V, showing that most of the voltage 

drop appears across the radial flux return.  

In the absence of instability, the electric field of Eq. (41) only produces the E x B 

drift motion transverse to flux surfaces that causes ions to “stick” to the moving field 

lines (omitted in our quasi-static pressure balance). The orbital motion is cycloidal, with 
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orbits circling around a drifting location called the “guiding center.” Radial motion of the 

guiding centers is required to produce the net radial ion current required for acceleration. 

Since collisions are negligible, radial current requires some form of turbulent plasma 

diffusion process to transport the ions.    

Among plasma transport processes that exist in a flux return with ion Larmor radii 

comparable to Δ, we call attention to electrostatic drift cyclotron instabilities studied for 

magnetic mirror fusion experiments with large ion orbits. For these instabilities, 

discussed in Appendix A7, turbulence resonant with ion cyclotron motion acts like a 

collision with collision frequency ∝ ωci, the relativistic ion cyclotron frequency, giving a 

diffusion coefficient in the radial direction of order: 

  

Dr  ≈  ωci<rL>2 = c<rL>     (43) 

 

with average Larmor radius <rL> from Eq. (40). Eq. (43) happens to scale like so-called 

Bohm diffusion, but proportional to the ion energy, not the electron temperature. Other 

plasma waves are discussed in Ref. [9].  

Given radial diffusion, the radial current density is jr = en<v> where: 

 

<v> =     - (Dr /n)(∂n/∂r)   ≈ Dr/r ≈     Ωao (<E>/eV)  (44) 

 

for an average ion energy <E>. Here, anticipating that the mean current would flow at 

less than speed c, we took the first form of Eq. (7) giving n = (I/(e<v>A) with A = 

(2πr)(2Δ) = 4πr<rL>, and we took <E> and <v> to have the logarithmic scaling of the 

voltage drop in Eq. (42), giving finally - n-1∂n/∂r ≈ (1/r)[1 + (2/(lnr/ao)] ≈ 1/r. 

 Acceleration of ions gives a current density en<v>, unless electrons cancel the 

current. Thus a crucial assumption is that the drift cyclotron instability can produce a net 

radial current by transporting ions radially, but not electrons. Arguments in favor of this 

assumption are discussed in Appendix A7. If these arguments prove to be correct, we 

would conclude that plausible processes exist to continue ion acceleration beyond r = b 

where radial acceleration begins.  
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That synchrotron radiation does not affect these conclusions can be seen as 

follows. As before, we calculate the maximum energy allowed by synchrotron radiation 

and compare this with the acceleration energy E(r) neglecting radiation, giving: 

  

E(r) ≈     ∫b
rdr e Er =    [eV ln (r/b) /X] <     (mic2) γSYN   (45) 

 

Here Er = (V/Xr) in the flux return, from Eq. (41) for field lines mostly radial (sinθ = 1), 

and we begin the integration at r = b, neglecting parallel acceleration to that point. To 

calculate the synchrotron limit on the far right, we recall that (v⊥/c) = 1 for this β = 1 

regime, so that the radiation rate of Eq. (28) applies. To obtain γSYN, we use this radiation 

rate and solve ecEr = PRAD to obtain, for ions: 

 

γSYN   =  2 x 105 (V/aoBo
2X)1/2 √(r/ao)    (46) 

  

Substituting Eq. (46) into Eq. (45) gives a condition for acceleration which, for our 

parameters, is satisfied for all b < r < R with b’s in Table 1 below. Thus, as anticipated, 

synchrotron radiation is not an impediment to ion acceleration in the nose.  

The radius r = b where drift cyclotron acceleration takes over is determined by 

prior acceleration by kink modes in the central column and in the nose giving a rest mass 

energy γ. We find b by setting rL = Δ: 

 

rL  =  (mv⊥γ/eB) =  (v⊥/c)2r  = (mcγ/eBoao)2r =   Δ =1/4 ao  (47) 

 

where we use results from Section 5 and half-width Δ = ½ (ψ/2πBr) = ¼ ao for Br = Bφ = 

Bo(ao/r) in a force free flux return. Here γ = γC + (eV/mc2)(ΔVab/V) for energy γC emerging 

from the central column and acceleration voltage ΔVab over a < r < b in the nose. Solving 

Eq. (47) for r = b gives, for numbers in Section 7 [γC = 2 x 107, (mcγ/eBoao) = 6 x 10-12 γ    

and (eV/mc2) = 3 x 1010]: 

 

 b/R = 0.01 [1 + 1500 (ΔVab/V)]-2 < 0.01   (48) 
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Neglecting γC, the maximum acceleration efficiency α due to MHD kink and drift 

cyclotron acceleration in the nose is, for our numbers: 

 

 α = ΔVab/V + [ln(R/b)/ln(R/ao)] = ΔVab/V +0.2 + 0.1 ln [1 + 1500(ΔVab/V)] (49)  

 

 We estimate ΔVab using E| |  =  cBo(B1/Bo)2(r/ao) from Eq. (38), giving: 

 

ΔVab/V = ∫abdr E| |/V=  (c/aoΩ)(R2/ao
2)(1/2 b2/R2)(B1/Bo)2   (50) 

 

where we use V = ao
2Ω Bo from Eq. (14). Combining Eqs. (48) and (50) gives, for 

numbers in Section 6: 

 

 ΔVab/V = 3.4(B1/Bo)2/5       (51) 

 

In Section 6, we found fluctuations in the central column to be of order B1/Bo ≈ 10-6, 

limited by synchrotron radiation. Near the nose where synchrotron radiation finally 

becomes unimportant, fluctuations can grow to limits set by the free energy due to 

current in the central column, which we estimate as B1 /Bo =10-6 in the central column in 

Section 6. Theoretical estimates in Appendix 6 also give B1 /Bo =10-6 on time average, 

giving α = 0.5 by Eq. (49). This estimate omits contributions from transient events 

discussed in Section 9. Also α in Eq. (49) is fairly insensitive to the exact value of B1 /Bo, 

giving 0.5 < α < 1 by Eq. (49) for 10-6 < B1 /Bo< 10-3 as tabulated in Table 1. Thus we 

conclude that α = 0.7 assumed in Section 5 is justified. All values of b/ao in the table 

satisfy Eq. (39) for r < b. 

   Table 1. Values of ΔVab/V vs. δB/Bo 

B1 /Bo   ΔVab/V  α b/R  b/ao 

10-6  0.01  0.5 2 x 10-5  7 x 104 

2.6 x10-5 0.05  0.7 2 x 10-6  5000 

10-3  0.21  1.0 10-7  300 
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8. Quasi-Steady Cosmic Ray Spectrum 

In Section 9, we will conclude that the main intensity of ultra high energy cosmic 

rays comes from quasi-steady acceleration, while transient events contribute to cosmic 

rays with energies > eV. Here we discuss mechanisms for escape of ions quasi-steadily 

accelerated in the nose. The escape rate determines the energy spectrum of observed 

cosmic rays.  

Some ions would escape simply by being accelerated, if their guiding centers are 

so near the outer boundary of the flux return that acceleration causes orbital excursions 

into fields too weak to bend the orbit on a return path. Here we focus on the likely 

majority of ions that remain confined inside the flux width 2Δ.  An obvious mechanism 

for the escape of confined ions is diffusion transverse to the flux return by the same 

instabilities that accelerate the ions. Since ions carry the current in our model, escaping 

energetic ions must be replaced by cold ions. While in the central column there is no 

obvious source of cold ions, a ready source in the “nose” is the (ambient gas/plasma 

being pushed forward by the expanding radiolobe, and the same instabilities that cause 

energetic ions to escape can transport cold ions inward, by exchanging hot ions for colder 

ions. Thus we anticipate that ion ejection as cosmic rays begins only when ions 

accelerated in the central column reach the nose. After that, their energy distribution 

Fo(E,r,z) acquires a cold component, varying also with radius r and axial position z across 

the return flux. 

Given Fo(E,r,z), a formal expression for the cosmic ray spectrum F(E) is:  

 

F(E)  =    ∫R(E)
Rdr dA(- DT∂

2Fo/∂z2)   ≈  (I/e)κ*∫R(E)
Rdr DT(fo (E)/<v>Δ2) (52) 

 

where DT is the transverse diffusion coefficient and on the far right we approximate Fo =  

nfo = (I/e<v>A)fo(E) using Eq. (7), and (-dA A-1 ∂2/∂z2) ≈ κ*/Δ2 with normalization ∫dE fo 

= 1; an adjustable parameter κ*; and a lower integration limit R(E), which is a function of 

the ion energy E,  discussed below.  

Eq. (52) sums up emissions of cosmic rays at energy E at all radial positions along 

the nose from r = b outward. We neglect any cosmic ray generation at r < b, where the 

voltage drop ΔVab << V. For r > b, where drift cyclotron acceleration dominates, the 
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maximum energy at r is given by E(r) ≈ (eV/X) ln r/b in Eq. (45), neglecting the energy 

of ions arriving at r = b. Then the smallest radius R(E) at which ions with energy E can be 

emitted, giving the lower integration limit above, is given by:  

 

R(E)   =  b exp (EX/eV)  → b      at E = 0   (53) 

  

In this regime, acceleration is due to the drift cyclotron mode, discussed in Section 7, 

with <v> ≈ Dr/r = DT/r by Eqs. (44) and (A26). Also, as is discussed in Appendix A7, the 

fact that the primary drive for drift cyclotron instability is the peaked energy distribution 

created by ion acceleration means that saturation of the turbulence is dominated by 

diffusion downward in energy that could eventually produce a stable f0 in competition 

with the transverse escape time Δ2/DT.  This tends to flatten the energy distribution below 

the maximum acceleration energy E(r), giving approximately: 

 

fo  =  (1/E(r))   , E ≤ E(r)    (54) 

 

With this distribution, the natural variable in Eq. (52) is E(r) = (eV/X)ln(r/b) 

giving dr → dE(r) (rX/eV) and an upper integration limit E(R) = eαV and lower limit 

E(R(E)) = E. Using <v> ≈  DT/r as discussed above and Δ = r(<E>eV)(Ωao/c) by Eq. (40), 

the D’s and all r’s cancel in the integrand of Eq. (52). Taking <E> ∝ E(r), this leaves an 

integral of the form:                

 

F(E) ∝ ∫E
eαV

 dE(r) (1/E(r)3) ∝ E-2    (55) 

 

This suggests a power law, exactly predictable for an exact treatment of turbulence. 

Given the uncertainties of our simplified treatment, we modify Eq. (55) as: 

 

F(E) =  κ(I/Ee)(E/eαV)-(Γ-1)    ∝ E-Γ    (56)  
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where κ* and other constant factors have been gathered into one adjustable parameter κ. 

Measurements give Γ = 2.7 over several orders of magnitude for the sum of all sources 

reaching Earth (see Ref. [1]; also Fig. 1 of Ref. [3] with the notation F(E) = dN/dE).  

 The adjustable parameter κ* contained in κ represents self-adjustments of 

transverse gradients of plasma density and temperature to achieve saturation of the 

turbulence, as discussed in Appendix A7 for drift cyclotron modes. The reasonableness of 

κ can be tested by calculating the value required to agree with the recently measured 

ultra-high-energy cosmic ray flux of 1/km2yr for E ≥ 1019 eV, all necessarily arriving 

from outside our galaxy at distances < RS ≡ 500 Mlyr = 5 x 1021 km [1]. The known 

number of AGN’s within 240 Mlyrs is 472 [1]. Let N < 472 be the number with energies 

sufficient to contribute cosmic rays with E > 1019 eV. If the N sources are arranged 

isotropically within the volume V = 4π/3 RS
3, then emission from one source Ii is given 

by:  

 

Σi (Ii /4πri 2)   ≈    N Ii ∫dV (V4πr2)-1   =  0.25 N (Ii/RS
2

 ) =  (1/km2yr)    (57) 

 

Ii  = (100/N) x 1042/yr   measurement (58) 

 

For comparison, our model source with parameters in Eq. (32) would emit: 

 

Ii(model)   =  ∫E1
eαVdE F(E) ≈ κ(I/e)(0.7/1.7)(eαV/E1)1.7  ≈   κ (15α1.7) x 1044/yr (59) 

  

with E1 = 1019 eV. Agreement between Eq. (57) and Eq. (59) requires: 

 

  κ  =  (1/15α1.7N)       (60)  

 

We can bound κ using power balance, as follows. Again we neglect cosmic ray 

power generated at r < b. Then the power and κ are bounded by:  

 

P   =   ∫E*
eαV dE E F(E)  =  αIVκ {[(eαV/E*)(Γ - 2) -  1]/ (Γ - 2)}DC  ≤  αIV (61) 
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κ ≤ (Γ - 2) [(eαV/E*)(Γ - 2) -  1]-1      (62) 

 

with F(E) for r > b given in Eq. (56). While cold ions are generated by recycle with the 

ambient, the dominance at r > b of drift cyclotron modes that would be quenched by very 

cold ions suggests a lower energy cutoff E*, and indeed E* = 0 gives infinite power.  

Two likely choices reflecting acceleration prior to r = b are E* at γ = 2 x 107 representing 

ions emerging from the central column, from Section 7; or E* = eΔVab representing 

acceleration over a < r < b. Using Eq. (62), γ = 2 x 107 gives a maximum κ = 0.005 

giving N = 20 by Eq. (60) (about 5% of the known sources). Taking E* = eΔVab = 0.05 

eV (giving α = 0.7 by Eq. (49)), we find κ = 0.04 and N = 3. Actually calculating κ 

would require kinetic simulation of drift cyclotron turbulence. 

 Finally, we note that the above analysis concerns the giant radiolobe as a quasi-

steady accelerator, accounting for most of the intensity of cosmic rays at energies < eV 

where as before V is the disk voltage. As is explained in Appendix A6, large but brief 

transient events in 3D that divert current out of the 2D central column can accelerate 

some ions to energies >> eV.    

 

9. Ion Acceleration by Transient Events: Ultra Ultra High Energies   

Transient kink modes discussed in Appendix 6 could yield much higher values of 

magnetic perturbations B1, giving much stronger electric fields. Suppose a coherent kink 

mode with current ΔI occurs over an interval Δs along the central column. The current ΔI 

is a 3D twisted column, leaving behind only a current IC = I - ΔI flowing in the 2D 

symmetrized central column in the interval Δs. The current IC could drive smaller random 

fluctuations B1 producing tangled fields, yielding an accelerating electric field given by, 

in analogy with Eq. (8):    

 

E| |  =    cBC(B1/BC)2 =    cBo(B1/Bo)2(Bo/Bc)  (63) 

 

where BC is the poloidal field due to IC. Ramping down BC during a kink event also gives 

an inductive acceleration - (µo/π)dIC/dt  somewhat higher  than Eq. (63) in some 

parameter regimes. In Appendix 6, we show that BC = Bo(IC/I) and based on free energy 
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the perturbations are of order (B1/Bo)2 = (B1/B(0))2(B(0)/ Bo)2 = (ao /ct). It is this estimate 

that gives, for quasi-steady acceleration corresponding to t = τ and IC = I, the value B1/Bo 

= 10-6 shown to fit electron sychrotron data in Section 7. Introducing this (B1/Bo)2 into Eq. 

(63) gives for the transiently-driven electric field in the central column:    

 

(E| |)CC  =    cBo(ao /ct) (I/IC)     (64)  

 

where t is the duration of B1 at peak amplitude.  

  The electric field in Eq. (64) can be much higher than the quasi-steady value of 

1.5 x 10-4 volt/m for numbers in Section 6 that we found for quasi-steady acceleration in 

Section 7. Since synchrotron radiation dominates for a field too large, again radiation 

dominates acceleration in a transient kink in the central column. Even so the larger E| | 

gives a much higher limit on γ > 1010, comparable to energies achieved by quasi-steady 

drift cyclotron acceleration in Section 7. A transiently-accelerated ion observed as a 

cosmic ray must arise within a distance Δs from the end of the central column, 

acceleration having occurred in the interval L - Δs < z < L. An ion accelerated further 

back loses its energy in flowing toward to the nose. The reason for this is that, though in 

the central column the forward flow of ions is guided by the central column field even if 

its ion orbit extends into the vacuum field, these ions rapidly lose energy by synchrotron 

radiation. For example, for an ion that does fit within the column radius, the loss of 

energy of an ion with an initial γ = γo traveling a distance s is found by integrating Eq. 

(34) for E| | = 0, yielding: 

 

γ =    γo[1  +   (γo
3 /γ1

3)] –1/3   <    γ1
   =    106(RC

2/3s)1/3   (65) 

 

In the central column γ1 = 3 x 106 with RC = ao = 1012 and s = L = 1022 . Thus we conclude 

that very large transient-accelerated values of γ are generated at the nose-end of the 

central column, within a range L - Δs < z < L, after which they escape on entering the 

nose. 

Transiently accelerated particle energies overlap and extend the cosmic ray 

spectrum. However, the transient intensity would be much less, leaving the quasi-steady 
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spectrum as the dominant contribution in its accessible energy range. The reason for this 

is that a transient event uses up locally available energy previously stored in the vacuum 

field. A second event must await restoration of this energy at a rate dL/dt and also the 

time required for growth of new kink modes, though this is probably faster than dL/dt.  

The resulting duty cycle is of order (tΔs-1 dL/dt) = (c-1dL/dt) = 1%. Thus we might expect 

the transient cosmic ray intensity to be < 1% of the quasi-steady intensity. 

Finally, transient events occurring in the nose itself could yield much higher 

energies. Again synchrotron radiation dominates, but (E| |)CC is amplified by (r/a0) as in 

Eq. (38). Adding this factor, substituting in Eq  (33) and setting the right hand side zero 

gives the maximum radiation-limited acceleration energy: 

  

γi  = [(6πε/e)(E| |)CC(r/a0)RC
2]1/4

 =    [109(cBo/Δs)(I/I - ΔI)r3]1/4  (66) 

 

where on the right we use Eq. (64) and RC = r in the nose, and we estimate Δs ≈ 1/kz for 

kink wave number kz and t ≈ (kzvA)-1 = (kzc)-1  giving Δs = ct. For our example numbers, 

even a mild kink in the central column driving fluctuations in an interval Δs in the nose 

around r = b could produce energies > 1021eV, like estimates for coherent wave 

acceleration in Ref. [4]. Again such events would be limited to a duty cycle < 1%.  

In Eq. (66), we have assumed that many ions continue to be confined sufficiently 

to experience E| | even as their Larmor orbit grows beyond Δ. A rough criterion, for those 

mainly making excursions into the vacuum field of the lobe, is, using results from Section 

5, Δs < rL = (6 x 10-12γ)2r, which is well satisfied for γ > 1011 (> 1020 eV) and Δs < r < b 

where strong δB fluctuations exist. 

 

  10.  Reverse Polarity, Electron Acceleration, Scaling 

Thus far we have assumed that the center of the disk is positive so that ions are 

injected from the disk into the central column. To our knowledge, the opposite polarity is 

equally possible and the polarity may be opposite on opposite sides of the disk (quadruple 

field). With reverse polarity, ions arriving by flow inward from the outer flux return are 

accelerated inward. For these inward flowing ions, the situation is much the same as our 

discussions above. Ions are accelerated to an energy E(r) = (eV/X) ln R/r yielding β = 1 
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and acceleration and ejection by drift-cyclotron instability, except very near the axis of 

symmetry. But synchrotron radiation by Eq. (46) dominates at r < b* that is comparable 

to b for positive polarity. 

Electrons are never accelerated to very high energies. As is discussed in Appendix 

A5, for the parameters of Eq. (32) the two-stream instability that slows down and 

probably scatters electrons, giving v⊥ = c, occurs everywhere that the force-free solution 

pertains, and also v⊥ = c for the β = 1 regime. Thus Eq. (28) always applies, whereby 

electron energies are severely limited by synchrotron radiation, with a maximum γe ≈ 108 

in the flux return. In the weak field at r = R, the maximum electron energy confined in a 

force free field is a few GeV, giving γe ≈ 104 which happens to agree with observed X-ray 

emission [3]. 

Turning to other astrophysical objects that might generate cosmic rays, we first 

note that, while disk parameters determine the accelerator voltage, the conditions for ion 

acceleration to the maximum voltage drop αV are insensitive to disk parameters. The fact 

that acceleration parallel to B persists to about 0.3V (α = 0.7), as found in Section 8, 

depends only the dimensionless ratio r/ao aside from a weak logarithmic dependence on 

the maximum radius R/ao. The condition that drift cyclotron instability eventually drives 

the ion current, thereby allowing acceleration to continue to the energy αeV, depends 

only on <v>/c = Ωao/c < 1. 

For a rotation speed approaching c, the disk voltage V (giving the maximum 

cosmic ray energy) and the current I depend only on the product of the disk radius ao and 

the embedded field Bo, by Eqs. (14) and (15), giving as the injected power: 

 

P = IV = c(aoBo)2(µoΩao /2πc)    (67) 

 

Given also the available energy EINJ  (a fraction of the black hole mass energy), we then 

obtain the lifetime τ = (EINJ/P) and the length L from [EINJ = L{(µoX/2π)I2} by Eqs. (10) 

and (13)] with X = ln (R/a) ≈ ln (L/3a) ≈ 20 by Eq. (17). The maximum cosmic ray 

energy is: 

 

 ECR = αeV =  αe Ωao (aoBo)     (68) 
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For a given black hole mass M, the representative disk radius ao can be crudely 

estimated by Eq. (6). Similar conclusions apply to rotating neutron stars. 

 

11. Conclusions, Future Work 

We have arrived at a magnetic model of giant radiolobes that could give rise to 

the observed synchrotron emission and also ultra-energetic extragalactic cosmic rays 

reported in Ref. [1]. In contrast with the magnetocentrifugal model much studied in the 

literature, in our model the observed synchrotron radiation arises from a thin, twisted 

filament of current inside the radiolobe structure. With adequate resolution to see it, this 

filamentary structure would provide a distinguishing feature of the model.  

In our model, cosmic ray acceleration occurs mainly in the advancing extremity 

or “nose” where current and magnetic flux expand radially to make their way back to 

disk. The dominant acceleration mechanism is the inductive electric field due to 

lengthening of the magnetic structure, producing at the extremity a large radial electric 

field of order (V/Xr) where X = ln(R/a) ≈ 20 and V = Ω(ao
2Bo) with accretion disk spin 

frequency Ω, embedded magnetic field Bo and representative radius ao a few times the 

Schwarzchild radius. Also, transient events can accelerate a few ions to energies >> eV.  

Since the inductive field E = - v x B has no component parallel to B, acceleration 

requires instability, first producing a toroidally-averaged parallel electric field well 

known from experiments and MHD simulations, then other instabilities driven by the ion 

energy that can accelerate ions perpendicular to the toroidally-averaged magnetic field at 

the extremity where the inductive electric field is highest. Self-consistency is 

demonstrated by comparing model predictions with observed dimensions and 

synchrotron radiation wavelengths, giving inferred black hole masses sufficient to 

produce V > 1019 volts, hence acceleration energies comparable to extragalactic cosmic 

rays thought to arise from AGN’s. A unique feature of the model is that the cm-range 

synchrotron radiation and cosmic rays arise from different parts of the structure, as 

discussed in Sections 6 and 7 of the paper.  A simple model yielding the qualitative 

features of laboratory experiments and our MHD simulations is discussed in Section 5, 

giving rules to extrapolate from giant radiolobes to other astrophysical objects in Section 
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10. The acceleration mechanisms mentioned above are explained in Appendices A6 and 

A7.  

While the kink modes giving rise to ion and electron acceleration are contained in 

MHD simulations, kinetic instabilities giving the acceleration perpendicular to B needed 

to reach the main intensity of ultra high energy cosmic rays require simulations of the 

Vlasov equation or Particle-in-Cell (PIC) codes at the cutting edge of modern plasma 

physics. Such calculations are needed to determine the synchrotron and cosmic ray 

energy spectra to be compared with data as an arbiter of model validity. Approximate 

cosmic ray spectra discussed in Section 9, and in Ref. [9], suggest that such efforts might 

be rewarding.  

 

Appendix A. Plasma Physics Topics 

 This Appendix discusses plasma physics topics referred to in the text. 

  

A1. Current Generation, Plasma Density 

 This section continues the discussion in Section 3 on the effects of gravity on the 

creation of current, and the assumption n → (I/ecA) by Eq. (7) that was crucial to our 

interpretation of electron synchrotron data, as discussed at the end of Section 3.  

The importance of gravity follows if current carriers in giant radiolobes arise from 

the disk itself. This is certainly true for the case discussed in Section 3 in which ion 

current in the central column emerges from an anode, thus requiring acceleration of the 

ions to overcome the gravity of the black hole. For the ideal MHD Ohm’s Law of Eq. (3), 

the magnetic field cannot accelerate ion current parallel to B. Acceleration requires that 

an electrostatic sheath form at the anode. An anode sheath is a region of net charge 

dominated by ions that constitute an ion beam accelerated across the sheath. 

In Section 3, we treated the disk center as being analogous to a metallic anode that 

requires a sheath to create plasma currents completing a circuit with current carried by 

electrons in the collision-dominated metal. This corresponds to an idealized case of a 

spinning magnetized disk of defined thickness with rotation frequency Ω(ψ) varying 

radially but independent of z. Then the radial voltage drop V given by Eq. (4) would be 

the same at each z and the electric field would be purely radial inside the disk. In the 
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absence of a current, surface charge projects the voltage drop V onto the disk surface. 

Magnetic field lines exiting normal to the disk act like “wires” connecting r = a to r = b in 

Eq. (4). If the voltage V between a and b exceeds the escape potential VG = miMG/d for a 

black hole of mass M at a depth d below the disk surface, ion current flows despite 

gravity by Eq. (6). The current begins to stretch the field lines, giving a voltage drop    

I(dLI /dt) by Eqs. (10), (13) and (16). But this inductive voltage drop must always adjust 

to be < V sufficiently to allow whatever sheath voltage drop ΔΦ is required to maintain a 

current I which is in turn self-regulated to equal the value given in Eq. (15), as shown in 

Appendix A2. The sheath voltage ΔΦ is determined by this dynamics together with 

Poisson’s equation, as follows.  

Consider the scenario of Sections 5 and 6, whereby the system settles to one in 

which two stream instability in the central column favors ions as the current carrier with 

speed <v> and limited thermal spread. Then the ion density is ni = (I/eA<v>), as in Eq. 

(7). Beyond the sheath, charge neutrality gives the electron density ne = ni.  Thus we 

neglect electron current and take ne = ni(∞), giving a Poisson’s equation of the form:  

 

-∇z
2φ = ∇z

2ϕ - 2VG(d/z3)  =  (I/εoA)(<v>-1 - <v>∞
 -1) ,   <v> = c[(Ei

2 – mi
2c4)1/2/Ei] (A1) 

 

On the right hand side, we took ni(∞) = (I/ec<v>∞) assuming that the ion density 

in the central column is just that of the ion beam emerging from the sheath, justified in 

Section 3 by an absence of additional ions injected from the outside due to self-shielding 

of the central column by the radiolobe itself. On the left hand side, we have changed 

variables from the electrostatic potential φ to the ion potential energy drop ϕ = (ΔΦ - φ) – 

VG(1 – d/z) giving the relativistic ion energy Ei = eϕ + mic2 used to calculate <v>. In 

terms of ϕ, boundary conditions are taken as ϕ = 0 (φ = ΔΦ) at z = d and ∂ϕ/∂z → 0 

(∂φ/∂z → 0) at z → ∞. The usual effect of electrons on ΔΦ in the laboratory [16] is not 

important here, since, due to synchrotron radiation, (Te /e) << VG for numbers in          

Section 6.       

Eq. (A1) assumes an ample supply of ions from the disk and space-charge-limited 

current emission. Near z = d, n ∝ <v>-1 is singular giving in the non-relativistic limit a 

Child-Langmuir sheath equation ∇z
2ϕ = (ϕ∞ /λD

2)(ϕ/ϕ∞)-1/2 with solution ϕ = ϕ∞ [(z – 
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d)/λD]4/3 [16] where ϕ∞ =   (ΔΦ - VG) and λD  = [eϕ∞/(eI/εoA(2eϕ∞/mi)1/2)]1/2 (a Debye 

length at “temperature” eϕ∞). To satisfy boundary conditions, this solution joins a 

constant solution ϕ = ϕ∞ at z – d ≈ λD. This procedure does not determine ϕ∞ precisely but 

it does insure solutions with ϕ∞ = (ΔΦ - VG) > 0 so that <v> is everywhere positive, thus 

indicating that the electrostatic sheath alone would force the escape of ions from the 

black hole if that is required to maintain the current I. Also, for numbers in Section 7, we 

found that MHD instability in the central column generates a potential drop ΔV = 0.03V 

that could accelerate protons to speed c in a distance of order 10ao. It is this combination 

of acceleration by ΔΦ and by ΔV that leads us to conclude that the density quickly 

relaxes to n = (I/ecA) in Eq. (7).  

  The above discussion assumed that the anode appears at the surface of a disk with 

well defined thickness, as is the case for a metallic anode bound together by atomic bonds 

strong enough to overcome electromagnetic forces due to currents flowing radially 

through the metal (by collisional transport of electrons across magnetic field lines). Now 

consider the more probable case in which the rotation frequency Ω(ψ,z) decreases with 

increasing z inside the disk. Then an axial electric field Ez will exist inside the disk, 

causing current loops that close inside the disk (again by collisional transport of 

electrons). At expected values of the resistivity η, ηjao << V (also V >> the drop from 

viscosity [7]). Thus these currents would not serve as a resistive short circuit; rather, they 

would produce stress forces across the disk. While j x B stress forces inside metallic 

electrodes usually cannot compete with metallic binding forces, the fact that V >> VG 

indicates that electromagnetic forces could rupture an accretion disk bound by gravity. 

The point of rupture defines z = d where the “anode” is located, as follows. 

For a current I capable of causing a rupture at z = d, a higher current I + ΔI would 

circulate at z < d (but above the event horizon) in order to balance higher gravitational 

stresses there. Where current flows upward, the current loop would branch, with ΔI 

returning radially just below the rupture point and a current I ejected on magnetic field 

lines above the rupture.  To find the rupture location d above the black hole, we calculate 

the force balance near the rupture point giving jr Bφ ≈ [nD (d)eVG /d] where nD (z) is the 

axial profile of disk density. Substituting jr = (I/ aod) and Bφ = (µoI/2πao) gives the 

following condition relating I to the density at the point of rupture: 
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nD(d)  = (µoI2/eVG2πao
2)        (A2)  

 

For numbers in Section 6, Eq. (A2) gives nD(d) ≈ 1017(d/ao) < 1017, a low value indicating 

that disruption can occur only in the low-density coronal edge of the disk. The collisional 

mean free path at this density is less than the electrostatic sheath thickness so a sheath 

would form as in the ideal example above. For a diffuse density profile at the time of 

rupture, ion current initially accelerated out of the sheath would enter field lines already 

loaded with plasma. At nD(d) < 1017 the number of ions captured on field lines would be 

at most only comparable to the the number needed to carry the current at full line length; 

estimating an average <n> = 0.1(d/ao)1017 = 1015 gives <n>ao
3 ≈ 1051 ≈ (IL/ec). In any 

case, the sheath-generated ion current would be sufficient to create instability that would 

accelerate all ions to speeds c >> dL/dt by Eqs. (9) and (16). If so, the original ions would 

soon flow to the disk, allowing the system to settle down to the ideal solution above.  

 We must also take into account centrifugal forces as well as gravity. This is not an 

issue near the axis of symmetry where magnetic field lines emerge perpendicular to the 

disk, that is, perpendicular to the plane of rotation. However, further out field lines 

emerge at an angle to the plane, giving finally a centrifugal force due to Keplerian 

rotation that exceeds gravity for ejection along field lines inclined more than 30o  from the 

axis of symmetry [2,8]. This part of the magnetic flux is embedded inside the flux 

containing the force free central column to which our sheath model applies, so that our 

sheath model giving a low density on expanding field lines still describes overall flux 

expansion and cosmic ray acceleration. That the central column is not much affected by 

centrifugal effects has been shown even in MHD simulations ignoring electrostatic sheath 

formation [17]. Moreover, two facts suggest that a sheath may form on all field lines, 

though the centrifugal force might distort the disruption surface where a sheath forms, 

Eq. (A2). First, barring a massive injection of pressure from the disk (giving β = 1), the 

magnetic field always relaxes to a well-defined quasi-equilibrium as discussed in 

Appendix A2. Second, if a sheath were needed to supply the necessary current on field 

lines at angles > 30o, the sheath electric force would greatly exceed the centrifugal force.  
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In MHD calculations, the electrostatic sheath must be represented by a boundary 

condition, as an applied voltage in Ref. [6] or as a flux generator in Ref. [5].  

 

A2. Helicity Injection 

This section discusses the theoretical underpinnings of Section 5 on the magnetic 

evolution of giant radiolobes, and the self-saturation of the current I at the value given in 

Eq. (15). 

As noted in the text, we adopt a cylindrical coordinate system in an inertial 

reference frame centered in the disk, with the axis (z) normal to the disk.  

For any chosen poloidal flux surface ψ as the boundary, the evolution of a twisted 

magnetic field with poloidal and toroidal components inside the volume bounded by the 

chosen flux surface is most precisely described by [18]:  

 

 dK/dt = 2Vψ - 2∫ dx E⋅B     (A3) 

 

where the voltage drop V across the bounding flux surface is given by Eq. (4) and  E and 

B are the electric and magnetic fields in our coordinate system and the helicity K is 

defined by: 

 

 K = ∫ dx A⋅B       (A4) 

 

for vector potential A. An exact gauge-independent definition of K is discussed in Ref. 

[18], valid even for a boundary changing in time as in giant radiolobes. This exact 

definition can be approximated as K ≈  ψψTOR where ψ is the poloidal flux defined in the 

text and ψTOR is the toroidal flux.  

The energy balance Eqs. (11) and (13) in the text follows from Eq. (A3), taking 

into account magnetic relaxation discussed below. As in Ref. [10], we divide the volume 

into two parts, the relaxed central cell (and return flux) and the radiolobe where, because 

of the limited time available, relaxation is incomplete and A and B are essentially 

vacuum fields produced by current in the central column; while in the relaxed force-free 

central column B = λA and µoj = λB with characteristic Taylor relaxation eigenvalue λ = 
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2/a where a is the central column radius.  Multiplying the central column portion of Eq. 

(A3) by (λ/2µo) gives as the drive (λ/2µo)(2Vψ) = IoV with Io = (2ψ/aµo), and (λ/2µo)K = 

∫dx (B2/2µo) inside the current channel, while the well-specified vacuum field of the 

radiolobe allows us to extend the volume to include the radiolobe, as in Eq. (10).  

In the text, we took as a boundary condition that I during buildup of the radiolobe 

saturates near I = Io ≡ (2ψ/aoµo) = (2πaoBo /µo) by Eq. (15), sometimes called the 

“bubbleburst” current. The constancy of I also determines the sheath potential ΔΦ that 

was not fully determined by Eq. (A1), since V in Eq. (13) should actually be replaced by 

V - ΔΦ - ΔV. The current I adjusts to Eq. (15); the disk density nD at the anode adjusts to 

Eq. (A2) at this current; and ΔΦ + ΔV adjusts so as to accelerate ions in the central 

column sufficiently to keep up with dL/dt. That I does saturate at the bubbleburst current 

can be seen as follows.  

Expansion of the column is due to the hoop force implicit in our equilibrium Eq.  

(2), giving approximately: 

 

nmidvz/dt          ≈ (n/no)(jr /ec)mid2L/dt2   ≈ jr (µoI/2πL)  (A5)  

 

where vz = dL/dt and we allow (n/no) > 1 to represent the transient phase of our disruption 

model of anode formation in Appendix A1, with no = (jr /ec) by Eq. (7). Also, by Eq. (13), 

upon differentiating and dividing by I, we obtain: 

 

V   = (Xµo/2π)[I (dL/dt) + 2L (dI/dt)]   (A6) 

   

where now we ignore ΔΦ + ΔV, and X = ln (R/a) as given in  Eq. (17). Eq. (A6) is only 

valid after bubbleburst, I ≥ Io. However, as confirmed by numerical solutions of these 

equations, following a transient during which n/no → 1 as discussed in Appendix A1, for 

numbers in Eq. (32) we find that, starting from I ≈ Io,  dL/dt grows rapidly by Eq. (A5), 

which causes I to fall rapidly below Io due to the dL/dt term in Eq. (A6). Since this is not 

allowed, actually I hovers at I = Io as in Eq. (15) and dL/dt = (2πV/XIoµo) = (Ωao/X), as in 

Eq. (16). Any actual increase in I above Io would be due to “disspation” by particle 

acceleration [9], omitted above bu included in Eq. (11). 
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When a stratified ambient pressure p(z) is present at height z, as in Ref. [4], the 

final radiolobe radius R is determined by balancing p(z) = (BTOR
2/2µo) at the flux return 

perimeter, as in that reference. At the pressures involved, the length L probably never 

reaches equilibrium but instead satisfies Eqs. (A5) and (A6), due to the strong j x B hoop 

force in the radial flux return that causes expansion of the length L to continue until the 

available energy is exhausted. 

We note that the above result, showing that L continues to expand as long the disk 

feeds power to the central column, though derived here from energy, actually depends 

only on helicity conservation discussed in Appendix A of Ref. [10]. We will return to this 

point in Appendix A6.  

  

 A3. Magnetic Relaxation and Hyper-resistivity 

 Our model of magnetic field evolution in Section 5 assumes that current is 

distributed across the central column and flux return. The justification for relaxation is 

given below. But first we note that the rate of expansion and certain other features of the 

model depend only on the magnetic energy, which is insensitive to the details of the 

current distribution. The main reason is that the poloidal current I, which is fixed by Eq. 

(15) per the discussion of Appendix A2, is independent of the poloidal current 

distribution, and the total I determines the vacuum field inside the lobe that produces 

most of the magnetic energy as discussed in Sections 2 and 5.  Even the energy inside the 

column only varies a factor of 2 or so ranging from a sheet current (no relaxation) to a 

distributed current, since most of the energy in the poloidal field is fixed by the boundary 

condition maintaining constant poloidal flux.  

Empirically the rate of magnetic relaxation is given by the observed voltage drops 

through Eq. (1).  For the central column, this gives B/t = (ΔV/La) or t/τ = (V/XΔV) ≈ 1 

for X= 20 and ΔV/V = 0.03, where we use ∂B/∂t = Bo/t and ∇xE = E/a and E = (ΔV/L) 

with Eq. (16) for the lifetime τ and Eq. (14) for B/V. Thus the central column is 

marginally relaxed over a lifetime τ. Similarly, relaxation in the nose with ∇xE = E/Δ 

with E = (V/Xr) and B = (a/r)Bo gives t/τ = (Δ/L) << 1 so relaxation is assured in the 

nose.  
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The detailed theoretical justification for relaxation involves the generalized 

Ohm’s Law, as follows. We note that it is the component of E parallel to B that appears 

in the helicity injection Eq. (A3), indicating that only E| | can cause helicity to propagate 

between 2D flux surfaces. This fact has led to keen interest in what is called the 

generalized Ohm’s Law, derived in Ref. [10] from combinations of the momentum 

moments of the ion and electron Vlasov equations, giving: 

 

(ne2/meγe
3)< E| |  + v1x B1 – ERAD  -  ηj| | >  = - ∇⊥ ⋅ Σ D ∇⊥ qnu| | (A7) 

 

The various terms represent departures from the ideal Ohm’s Law that allow 

current to penetrate into the central column and flux return, even though collisional 

resistivity denoted by the term ηj| | is negligible in giant radiolobes. As mentioned in 

Appendix A1, collisional resistivity does probably play a role in allowing current to flow 

across the field lines inside the dense disk where rotation and embedded flux create a vxB 

electric field, but resistivity is finite giving rise to the concept of “frozen in” flux [6]. 

Once distributed in the disk, the current would remain distributed during flux expansion, 

but not necessarily in the state of magnetic relaxation within the 2D flux channel that we 

used to reduce flux expansion to a circuit equation above. Synchrotron radiation could 

promote relaxation in the central column, via the term ERAD = (PRAD /ec). Plasma 

turbulence also contributes to magnetic relaxation. Because volume integrations are 

performed, Eq. (A3) concerns only toroidally-averaged quantities, which however are 

quadratic and hence involve averages over products of 3D quantities corresponding to 

turbulence. In Eq. (A7), turbulence appears via v1 giving “MHD hyper-resistivity” and 

turbulence also gives the D term representing “kinetic hyper-resistivity” due to “micro-

instabilities” discussed below. Here ⊥ means perpendicular to Bo, the toroidally averaged 

magnetic field, and <…> also denotes a toroidal average, while the subscript 1 denotes 

3D perturbations. The factor (ne2/meγe
3) on the left hand side is large despite our having 

included a relativistic correction (coming from dv/dp = 1/mγ3) that also occurs in the two-

stream instability discussed below. This large factor reduces the importance of kinetic 

hyper-resistivity in the central column, leaving MHD processes as the main mechanism 

that contributes the 2D inductive voltage ΔV in the text [10]. Even ideal MHD kink mode 
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contributions to <v1x B1> produce magnetic relaxation of the toroidally-averaged state, 

with v1 ≈ vA(B1/Bo)  for Alfven speed vA, as in Eq. (9). The kinetic hyper-resistivity may 

play an important role in magnetic relaxation in the flux return where D is large. Thus 

there appears to be, for the parameters derived in Section 6, multiple reasons why 

magnetic relaxation is to be expected.  

    

A4. Current Filamentation in the Central Column  

 Having found in Appendix A2 that inductance rather than inertia determines the 

rate of expansion of the magnetic structure, we can drop the time derivative in the 

momentum equation, giving the force balance in Eq. (18) of the text, obtained from:  

 

 (j x B)  =  ∇⋅ ∫ dp pvfo      (A8) 

 

Dropping cylindrical geometry effects and approximating the pressure term as described 

in Section 5 gives Eq. (18) for the cylindrical central column of Fig.1A. In Ref. [3], it is 

pointed out that 3D micro-instabilities can cause the central column to break up into 

filaments on the scale of the magnetic skin depth c/ωpi with ion plasma frequency ωpi. For 

parameters of Eq. (32), this yields NF = 1010 filaments, each carrying current I/ NF and 

poloidal flux ψ/N. Short wavelength MHD kink modes might also produce filamentation, 

for say, NF = 10. Though unstable, these filaments would nonetheless approximately 

satisfy Eq. (A8) as they interact with each other, giving a result analogous to Eq. (19). An 

important difference from Eq. (20) derived from Eq. (19) is the fact that the toroidal field 

acting on a wandering filament has two contributions, one from the current in the 

filament and one due to the 2D central column which is the average of all filaments, 

giving by symmetry a current I in the force-free central column. Then the toroidal field 

entering in the force balance for a single filament is: 

 

 BTOR  = C(µoI/2πr) ;           C   =   [1  +  (r/ NFa) ]    (A9) 

 

where a is the radius of the filament. Using also BPOL = (ψ/NFπa2), we obtain as the 

filamentary version of Eq. (20): 
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(1 – (aor/NFCa2)2]    =    4(r/NCa)2
 (NFK)(v⊥/c)2     (A10) 

  

where (aor/NFCa2) = (BPOL/BTOR) and K = (mγc/eaoBo) < 6.4 x 10-3 for numbers in Eq. (32) 

with maximum γi = 109 for ΔV/V = 0.03. 

That Eq. (A10) yields force-free solutions giving ion acceleration dominated by 

synchrotron radiation as in the central column, with similar limitations on the maximum 

ion γ, can be seen as follows. Such solutions require that (aor/ NFCa2) = 1 to make the left 

hand side equal zero. It is straightforward to show that for any NF and r this gives a/ao ≤ 

√3, hence a low synchrotron limit on γ equaling that in the central column, multiplied by 

31/4 = 1.3.   

One can not so easily eliminate all β = 1 solutions analogous to solutions for large 

r in the flux return, which require that both sides of Eq. (A10) be about unity 

simultaneously. More work would be required to reconcile such solutions with residence 

times in the central columns for wandering filaments that must add up to a net toroidally-

averaged current I in the 2D central column, and also to show that acceleration and 

ejection mechanisms exist if such filaments are to participate in cosmic ray production. In 

any case, ion energies would not exceed eΔV, hence well below those in the force-free 

portion of the flux return, if ΔV/V = 0.03 as in Eq. (32).   

 Even if filamentation is unimportant in the central column, it may play a role in 

ion acceleration in the nose, as discussed at the end of Appendix A6. 

 

 A5. Electron Scattering 

 The calculation of electron synchrotron radiation in Section 3, giving the results 

for disk parameters in Eq. (32), assumed that instabilities in the central column scatter 

electrons giving the radiation rate of Eq. (28).  A probable initiating mechanism is the 

two stream instability occurring between counter-streaming ions and electrons in the 

central column, with growth rate Im ω given by [16]: 

 

 Im ω = (me/mi)1/3ωpe (√γe/γi)     (A11) 
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where we have applied the relativistic correction from Ref. [19]. Eq. (A11) gives Im ω τ 

= 1.4 x 1011, hence strong growth of two stream instability, for numbers in Eq. (32) 

giving in the central column n = 1.8 x 104 in ωpe  = √(ne2/mεεo) = 7.6 x103 and γe ≈ 1 and γi 

= 1.3 x 107 due to synchrotron radiation of electrons and ions.  

Even in the relativistic case, the two-stream instability is known to spread electron 

momenta parallel to B with little effect on the ions. The result is a highly anisotropic 

electron pressure distribution with a large free energy to drive instability. Because 

scattering requires action perpendicular to B, the cyclotron frequency is involved, either 

for electrons acting on themselves [19], or electron plasma oscillations resonant with the 

ion cyclotron frequency ωci [20]. The low density in the central column gives both ωpe << 

ωce and ωpe << ωci (for relativistic frequencies), outside the regime most studied in the 

literature. In any case, PIC or Vlasov simulations would be required to determine the 

resulting electron energy distribution giving synchrotron spectral distributions that could 

be compared with observations. The total power given by calculations in Section 7 should 

not be much affected by the spectral distribution and hence could be compared with 

available luminosity data [15]. 

 Conditions for two stream instability continue to be satisfied over the force-free 

portion of the flux return, where the density relative to that in the central column scales as 

n ∝(ao
2/4Δr) giving Im ω τ = 1.4 x 1011 (1.3 x 107√γe/γi)(ao

2/4Δr)1/2 > 1 as the condition for 

two-stream instability, and electrons transported by diffusion automatically acquire v⊥ = 

c. Then electron synchrotron radiation is always given by Eq. (28), giving as the 

synchrotron-limited energy Eq. (42) (derived for ions) multiplied by (me/mi), or γSYN  =  

55 (V/aoBo
2X)1/2 √(r/ao) which is always less than E(r) = (eV/X) ln R/r for electrons with 

positive polarity, with a maximum equivalent to γe  ≈ 108 occurring near the central 

column for positive polarity.  

             

A6. Transport and Acceleration by Tangled Magnetic Fields 

In this Section, we return to the discussion of helicity injection of Appendices A2 

and A3, with an emphasis on instability and transport.  
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Let us first contrast two situations, our disk and a laboratory experiment with a 

flux conserver of fixed length. Let each be driven by a helicity source at constant current 

I with fixed bias flux ψ,  At any instant the helicity per unit length is fixed, ∝ Iψ. For the 

laboratory experiment, continuous injection of helicity into a column of fixed length 

produces instability that pumps helicity out of the column into the interior vacuum region 

of Fig. 1A, causing the magnetic field there to increase until limited by dissipation [9]. 

Now consider the disk problem. Because the length is growing, pumping in helicity 

mainly lengthens the column.  

That it is helicity alone that drives dL/dt can be seen using Eq. (A3), giving: 

 

2Vψ   =  dK/dt  =   d/dt ∫A⋅B  ≈   d/dt 2πL ∫0Rr dr (ψ(r)/2πr)(µoI(r)/2πr)   

≈  d/dt [L(ψµoI/2π) lnR/ao]    = dL/dt [(ψµoI/2π) lnR/ao] (A12)  

 

Here we omit the term ∫E⋅B in Eq. (A3), which mainly serves to distribute helicity 

radially by instability while conserving the total helicity [10], and we retain only the 

dominant contributions from Aφ and Bφ evaluated in terms of the cumulative poloidal flux 

out to radius r and the cumulative poloidal current I(r), found by integrating                  

r -1∂(rAφ)/∂r = Bz  and r -1∂(rBφ)/∂r = µojz, respectively. In the second line, we use the 

conservation of helicity to write K as the unperturbed value in the absence of instability, 

approximated on the right by the constant flux ψ and current I tied to disk parameters. 

Then only L changes, giving Eq. (16) of the text (using Eqs. (14) and (15)), if we also 

introduce the particle acceleration efficiency α as the only surviving effect of the ∫E⋅B 

term. A similar result shows that kinetically-driven hydromagnetic expansion is not 

impeded by magnetic turbulence [21]. As discussed in Appendix A2, expansion of the 

central column would be slowed down by accumulated mass giving vA << c, often 

encountered in laboratory experiments but not for our disk model with vA = c.   

 We now apply the above discussion to calculate the magnetic perturbation B1 

representing entanglement of field lines. This B1 determines the electric field of Eq. (8) 

employed to discuss electron acceleration in Section 7 and ion acceleration in Section 8. 

We can estimate B1 from free energy due to magnetic relaxation trying to fill the vacuum 

region of Fig. 1A. For the radiolobe, with a limited duration τ, relaxation extends only to 
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a radial gradient length R1 determined by magnetic diffusion due to the instability 

producing relaxation with a residual vacuum field outside r  = R1.  

 Free energy is liberated by unstable 3D perturbations B1 giving as the total 

magnetic field: 

 

 B  = <B>   +  B1  

 

where < … > denotes the axisymmetric component, which is the field dealt with thus far 

in this paper. In principle, free energy is found by calculating the relaxed state at constant 

helicity satisfying: 

 

  ∇ x <B>   = λ<B>      (A13) 

  

 <j> x <B>  = 0      (A14) 

 

As is shown in Ref. [10], for a plasma connected to a helicity source, λ is not constant but 

instead falls from a peak value λ1 inside the central column to a lower value outside of 

order λ ≈ 2/R1, where, for a central column poloidal flux ψC and poloidal current IC, λC is 

given by:    

 

 λC = (µoIC /ψC) = (µoI /ψ)  =  2/ao  (A15) 

 

Because relaxation is ongoing and helicity is transported by ∇λ [10], the λ profile is 

evolving in time. Here we avoid these complexities by noting that the pressure balance 

Eq. (A14) implies that any solution of Eq. (A13) gives the magnitude |<B>| ≈ B(0)  

throughout the domain, where B(0) is the value at r = 0. Using this and the fact that              

∫ <B>⋅B1> = 0, we approximate the conservation of energy as: 

 

πR1
2B1 2  +  πao

2(B0 - B(0))2  =    πao
2Bo

2 [1 + ln(R/ao)]  -  πR1
2B(0)2 [1 + ln(R/R1)]  (A16) 
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The first term on the left hand side of Eq. (A16) represents tangled fields. While 

tangled field lines in 3D may be thinly distributed throughout the volume, as discussed in 

Section 6 and Appendix A3, their energy is concentrated within r < R1 ≈ (∇λ/λ)-1, since 

diffuse lines of the same flux as that at r < R1, in spreading out to R* have an average 

amplitude reduced by (R1/R*)2 giving an energy less than the above  by a factor 

[R*2(R1/R*)4/R1
2] = (R1/R*)2.   The second term on the left is the approximate energy in 

coherent kink modes discussed in Section 9. The right hand side is the free energy, the 

first term being the unperturbed energy in Eq. (10), using Eq. (15), where here we retain 

the unity term concerning magnetic energy inside the column, versus the logarithmic 

vacuum term. The second term on the right includes the region r > R1 which is 

approximately a vacuum field despite a few loosely distributed field lines as noted above. 

We have canceled the common factor 1/2µo and we omitted the length L, giving then the 

energy line density. It is the fixed magnitude of this line energy density that reflects the 

limited free energy available in a column whose length freely expands, as noted above. 

The significant feature in Eq. (A16) is that the vacuum field dominates the energy 

and only the symmetric states before and after a kink contribute much to the vacuum 

field. This follows from the fact that the symmetric vacuum vector potential is Aφ ∝ 

ln(r/ao) giving Bz ∝ 1/r and energy ∝ ln(r/ao), while the vacuum field of kink 

perturbations (ideal or tearing) is dominated by Az in ∇ x (∇ x A) = 0 in vacuum giving 

Az ∝ r -m for a mode with azimuthal wave number m, giving Bφ ≈ Br ∝ r –(m+1) and an 

energy of order πao
2(B0 - B(0))2 (no log factor) as in Eq. (A16). This is true for any kink 

with kz << m/ao. Thus a transient coherent kink, in reducing B = B0 - B(0) and hence its 

associated vacuum field, releases a large excess energy available to create tangled 

magnetic fields.  

 The radius R1 is given by diffusion caused by tangled magnetic field lines, giving 

approximately: 

 

  R1
2

 = Dt = caot (B1
2/B(0)2)    (A17) 

 

where t is the duration of B1 at peak amplitude. The diffusion coefficient D has two 

origins, each giving about the same magnitude of diffusion for our problem. First is 
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magnetic diffusion analogous to classical diffusion due to resistivity η, giving D = η*/µo 

where η* = (E| | /j| | ) with j| | = (B/µoao) and E| |  = vAB(B1/B0)2 from Eq. (8) with vA = c. A 

second origin for D is due to ion (and/or electron) flow parallel to the tangled field lines 

that occasionally nearly touch so that small effects can cause ions to jump from line to 

line. For relativistic ions with speed c, this transport, calculated by Rechester and 

Rosenbluth [22], again yields Eq. (18) but with d = LC, the correlation distance between 

touching points. Actually these diffusion processes are additive, the first kind being 

diffusion relative to a reference frame fixed in the disk, the other relative to the field 

lines. Both give rise to E| | , which is to say that flow of particles parallel to tangled field 

lines accelerates these particles parallel to the symmetrized field lines.  

Substituting Eq. (A17) into Eq. (A16) gives B1. We solve the resulting equation as 

a quadratic in B1
2, first treating ln(R1/ao) as constant, to be iterated toward a solution: 

 

(B1/B(0))2  =  1/2 X* { -1 + [1 +  4(CX/X*2)]1/2} =  C(X/X*)  ≈  C  (A18) 

      

X   = 1 +  ln(R/ao)  - (1 - B(0)/B0)2        

X* = 1  + ln(R/R1) =   1 + ln(R/ao)  - ln(R1/ao)     

 

Here C is given by:   

  

C   =   (ao /ct)(Bo
2/B(0)2)  =  (ao /ct) (I2/IC

2)     (A19)    

 

where on the right we take B(0) = µoIC /2πao) by Eq. (A15) and Δs is the interval along 

the current path over which turbulence described by Eq. (A17) applies. Eq. (A18) is valid 

for for C << (X*2/4X)  ≈  5 (allowing quite large fluctuations, the solution for larger C  

being √CX).  

We consider quasi-steady turbulence in the central column, taking t = τ and IC  = I, 

yielding for numbers in Section 6: 

 

  (B1/Bo) = √C = 10-6,     steady turbulence   
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This result agrees with the value found to fit electron synchrotron data in Section 6, 

yielding an ion acceleration efficiency α = 0.5 in Table 1, Section 7. 

Eqs. (A18) – (A19) are applied to transient acceleration in Section 9. 

 The condition for a local coherent kink to occur can be inferred from Taylor’s 

discussion of coherent distortions of Reversed Field Pinches (RFP) in Ref. [23]. On 

approximating the RFP and spheromak as a straight cylinder [24], these conditions differ 

mainly in the fact that an externally applied toroidal field in the RFP allows greater 

freedom in the characteristic parameter λ = µj⋅B/B2 whereby the relaxed state with 

minimum energy at fixed helicity, giving an eigenvalue λ ≈ 2/ao for spheromaks, can 

instead exceed λ = 3.2 in RFP’s, this being the threshold at which the lowest energy state 

is not symmetric but is instead a coherent kink as observed in RFP’s [23]. A coherent 

kink can also form in the spheromak if λ is not constant inside the central column, as can 

happen because relaxation is not complete, as discussed in Appendix A2. An example is 

given in Ref. [24] for a cylindrical equilibrium with interior λ values up to λ = 5.5.    

 

          A7. Transport by Drift Cyclotron Modes 

          Ion acceleration discussed in Section 7 requires some means of diffusing ions 

preferentially across field lines. A likely candidate in the flux return is the drift cyclotron 

instability, in which ions (but not electrons) experience cyclotron resonance with the 

plasma waves. In this section we mainly focus on diffusion by drift cyclotron instability, 

with comments about the closely related filamentation instability at the end. 

  The threshold for the electrostatic drift cyclotron instability is discussed in Ref. 

[25] for a non-relativistic plasma. Here we discuss relativistic corrections and estimate 

transport rates. 

For the drift cyclotron mode, the electron charge perturbation due to ExB drift 

across a density gradient is unchanged by relativity, the perturbed drift velocity still being 

given by E1 + v1xBo = 0. A term omitted here, given in Ref. [5], is order me/mi (with 

relativistic masses), very small for our parameters. Then, for electrostatic modes 

(wavenumber k parallel to E1), the electron charge perturbation is obtained from the 

continuity equation: 
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- iωn1 = - ∇⋅ {[(ikxBo/Bo
2)Φ1]no}     (A18)  

 

Relativistic corrections to the ion charge perturbation for drift cyclotron modes 

require first replacing the cyclotron frequency by its non-relativistic value divided by γi 

both in calculating the resonant frequencies and the Larmor radius. To see this, we note 

that, for the ions, we can neglect the density gradient, giving plane waves with wave 

number k. We linearize the relativistic Vlasov equation and for electrostatic modes we 

take the perturbation E1 parallel to k. Using Faraday’s Law, we obtain, for frequency ω, 

ωB1= kxE1 = 0 for electrostatic modes, hence no magnetic perturbation in the Lorentz 

force, and we may take E1 = - ikφ1. The remaining complications concern integration 

over the relativistic ion orbit to obtain, by analogy with the non-relativistic case in Ref. 

[25]: 

 

 f1 = noeφ1 ∫ t dt′ i ky (∂foi/∂py)     (A19) 

 

where we retain only a ky component perpendicular to Bo in the z direction (“flute-like” 

mode). In the regime of interest, where acceleration gives a roughly Maxwellian ion 

distribution foi ∝ exp(-E/T), (∂foi/∂py) = - (∂E/∂py)( foi/T) = - vy( foi/T) just as in the non-

relativistic case. Then the orbit integration procedure of Ref. [25] yields a drift cyclotron 

dispersion relation identical with the non-relativistic case, merely by substituting the 

relativistic cyclotron frequency, as stated above, and replacing integrals on v by integrals 

on p. 

 The other relativistic correction comes from T appearing in (∂foi/∂py) above, 

whereby, for Debye lengths calculated in terms of mass, the mass is really T and should 

be taken as the relativistic mass. If we substitute relativistic masses, we may still use the 

non-relativistic threshold for drift cyclotron instability, given in Eq. (148) of Ref. [25], 

giving instability if: 

 

 εrLi  > 0.4(ωci
2/ωpi

2)2/3       (A20) 
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where ε = |∇n/n|. Here rLi and the cyclotron and plasma frequencies should be calculated 

using the relativistic ion mass,  giving, with the density from Eq. (4): 

 

 ωpi
2/ωc i

2 = (Ie2/e<v>Aεomi γi)( mi 2γi
2/ e2BTOR

2) ≈ (c2/<v>v⊥)εrLi (A21) 

 

where v⊥ arises from introducing rLi, ε arises from A (either a in the central column or Δ 

in the flux return) and a or r in A divided into I cancels one factor BTOR. Substituting       

Eq. (A21) into Eq. (A20) gives for the instability condition: 

 

εrLi > (<v>v⊥/c2)2/5       (A22) 

 

This condition is not satisfied in the central column where <v> = c but εrLi = (rLi /ao) = 

(v⊥/c)2 with v⊥/c = 10-4. It is finally satisfied in the flux return just where it matters for our 

model, as rLi/ao → 1 giving εrLi → 1 and β → 1, giving also v⊥/c  →1 and <v>/c →          

(Ωao /c)(E/eV) = 0.2(γi /γMAX) by Eq. (39). 

  Eq. (A18) applies for a “loss cone” distribution empty at low ion energy. Since 

the basic drive for drift cyclotron modes is k⋅∂fo/∂p for the ions, saturation of the 

perturbation spectrum occurs when the rate of momentum diffusion filling in the “loss 

cone” matches the rate of ion escape via interaction of ion guiding centers with the 

electron drift waves, as discussed in Section 8 of the text. The radial and transverse 

diffusion coefficients in that discussion are related as follows. 

Transverse diffusion by the E x B drift wave motion gives: 

 

 DT  = τCT(E1r/BTOR)2       (A23) 

 

with correlation time τCT. The energy diffusion coefficient is: 

 

 DE = τCE (dε/dt)2  = τCE(ecE1r)2    (A24) 

 

where dε/dt = cdp/dt = ce E1r for relativistic particles. Treating DE as an effective 

“collision,” the radial diffusion coefficient is: 
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Dr =   (DE/(mγc2)2]rL
2     =     τCE(ecE1r)2(rL/mγc2)2    =   τCE (E1r/BTOR)2  (A25) 

 

where rL = (mγc /eBTOR) and all parameters are for ions.   

Comparing Eqs. (A23) and (A25), we see that, if the correlation times are about 

the same: 

 

Dr   ≈ DT        (A26) 

 

Since the D’s are comparable, and the radial density gradient gives a well-defined current 

velocity <v> = Dr/r by Eq. (44), it follows that it is the transverse pressure gradient across 

the width Δ that must adjust to bring about saturation of the turbulence. The density 

gradient also adjusts independently, in response both to density requirements to carry the 

current and squelching of the instability if too many ions accumulate at low energy to fill 

the “loss cone.” Density adjustments also affect the magnitude of |∇n/n| in Eq. (A20) and 

the orientation of k in Eq. (A18). 

Again, a correct calculation of ion transport sufficiently accurate to verify our ion 

diffusion model and also to yield the predicted cosmic ray energy spectrum requires 

Vlasov or PIC simulations. 
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